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Exercice 1. On considére I'application 6 de K? x --- x K? = (K?)” dans K donnée par

B X, - X, C
R Rl

Cette application est p-linéaire et alternée. Le théoreme fondamental sur les déterminants
entraine alors que 6 est un multiple du déterminant p x p, i.e.

(X1, -, X,) =7 -det(Xy, -+, X,).

On trouve «v en évaluant les deux membres de 'expression précédente sur la base cano-
nique (e, - ,e,) de KP,

Oler, &) =|7 g

L, C‘

On peut ensuite montrer par récurrence sur p et en développant le déterminant par
rapport a la premiere colonne que #(ey,--- ,e,) = det B. On a alors

O(Xy, - 7XP) = det B - det (X7, - - ,Xp)~

En considérant que Xj,---, X, sont les colonnes d'une matrice A, on obtient bien 'ex-
pression du déterminant par blocs voulue.

Pour le polynome de caractéristique de M, on a donc
xv =det(M — X I,,) =det(A— X 1,)det(B — X1,) = xa x5

avec n = p+q, car
M—Xln:<(A_XIp) - )

0 (B-X1,)

Exercice 2. (a) Rappelons que deux matrices A, B € M,,(K) sont semblables s’il existe
P € GL(n,K) telle que B = P~'AP. Lorsque c’est le cas, ces matrices ont le méme
polyndéme caractéristique car

x4 =det (A—XL,) =det (PBP™' - X1,) =det (P(B—X1,)P")
=det(B— X1,) = x5

b) La multiplicité géométrique d’une valeur propre A est la dimension de 'espace
( P g q prop p
propre associé a cette valeur propre :

multgeom, (A) = dim (E\(A4)) ou E\(A) = Ker (A — AL,)
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(c) Si A € K est une valeur propre de A associée au vecteur propre v € K", on a
Av = M. Comme B = P~'AP, on obtient

B(P ') = PT'AP(P ') = P'A(PP v = P ' (Av) = P (\w) = A P .

Par conséquent, A est également une valeur propre de B de vecteur propre P~'v. On en
déduit que la multiplicité géométrique de X pour B est au moins égale a celle de \ pour
A, et les roles de A et B étant symétriques, on obtient 1’égalité.

Exercice 3. Le principe pour trouver le terme général est le suivant : pour n € N on

In ) On a alors

forme le vecteur X,, =
Tn+1

0 1
X1 = A- X, avec A:(_4 5)

_ Lo _ 1 __An
XO_(Il)_<3) et Xn—AXQ.

Pour résoudre la récurrence, il faut donc en principe calculer les puissances de la matrice
A. On peut toutefois faire I’économie de ce calcul et utiliser le théoreme vu au cours.
Voyons les deux méthodes.

On a donc :

Méthode 1. On a vu au cours le théoreme suivant :
Théoréme. Supposons que la matrice A associée a la récurrence linéaire
Thtm = ATk + A1 Tp41 + *** + Cp—1Tktm—1,
est diagonalisable, alors le terme général de la suite {xy}ren $'écrit
T = NAT 4+ AL

ot 0(A) = {A1,..., A\s}. On détermine les ~y; a partir des conditions initiales sur la suite.

Dans notre cas, A est une 2 x 2 matrice de polynéme caractéristique
xa=X>—5X+4=(X—1)(X —4).

Il y a donc 2 valeurs propres distinctes, le spectre de la matrice A est o(A) = {1,4}, en
particulier A est diagonalisable et on peut appliquer le théoreme. On sait donc que

T =71 + e - 45
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Pour déterminer les v;, on utilise les conditions initiales : xg = ¢y =1 et 1 = ¢ = 3.
On a donc le systeme linéaire (les v; étant les inconnues) :

Mmtr =1
M+ 4y =3

1 4
En résolvant ce systeme trivial on trouve v, = 3 et 7, = 3 et donc finalement :

1 2
= - 1% AR =2 gk
T =" + 72 3—|—3

1
Par exemple x5 = 5(1 +2-45) =2049/3 = 683.

Méthode 2. On diagonalise la matrice A. On sait déja que ses valeurs propres sont
1 et 4. On cherche une base propre {U,V'} :

AU =U, AV =4V.

1
4
nuls arbitraires de ces deux vecteurs) ; on a donc la diagonalisation :

- 1 (10 (11 ,1_1 4 —1
A=PDP ", avec D—(O 4 , P = 1 4 , P =3l 1 1)
donc

_ 1/1 1\/1 0 4 —1 1 4 —4F 144k
E_ kp-1 _ 1 S
AT=PDep _3(1 4) (0 4k)(—1 1) 3(4—4k+1 —1 441 )
On a donc
P e e 1\ _1/1+2-4
07 3\ 4 gk+l g g gkl 3 ) "3 142401 )

On a donc zy = %(1 + 2 - 4F). Cest donc une méthode bien plus lourde et d’un intérét
limité.

1
On trouve facilement les vecteurs propres U = (1) et V = ( ) (ou des multiples non

Remarque 1. Méme si la matrice n’est pas diagonalisable, on peut tout de méme utiliser
la méthode astucieuse. Si 'une des racines a une multiplicité positive, on considere au
lieu de termes de la forme A" des termes de la forme n*\” et on vérifie sans peine que cet
Ansatz fonctionne toujours. On peut méme oublier la matrice A. Si on a une suite de la
forme

Tpy2 = A Tpy1 + by,
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on considére le polynome X? — aX — b. Si ses racines \;, Ay € C sont distinctes, alors il
exist v1, 72 € C tels que

Tp =71 AL + 72 A5,
Si Ay = \g, alors
Ty, = NA] + Y2 nAT.

On sait déja que {AT}, oy est une solution de cette récurrence linéaire, donc il suffit de
montre que {z, = A5}, en est également une. En effet, on a

Tpyo = (n+2)NT2
D’autre part, on a
aTpi1 + bz, =aln+ DN +bn AL
Comme X? —aX — b= (X — \)? on obtient a = 2\; et b = —\?. On a donc
aTpi + 0w, =2(n+ DAIT2 —n A2 = (n + 2N = 2,40,

On vérifie de méme que ce principe fonctionne pour les récurrence d’ordre arbitraire. Avec
une récurrence de la forme

Tpt3 = QTpy2 + bTpp1 + CTp,

on factorise P = X? —aX? —bX —c = (X — X\)(X — X2)(X — A3). Si les racines sont
distinctes, une base de solutions est fournie par

{A1, A5, A5}

Si une racine est double (on peut supposer sans perte de généraliser que c’est \;), alors
une base de solution est fournie par

{AT. n AT, A5}
Enfin, si A est une racine triple, la base de solutions est donnée par
{Xf, nAY, n%\?}

On laisse au lecteur le soin de vérifier ces assertions (qui se généralisent en tout degré).
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Exercice 4. Comme dans 'exercice précédent, pour n € N on forme le vecteur X, =
Tn
Tni1 |. Alors

Tni2

Xpy1=A-X,, avec A=

N OO
—_ O =
o = O

Le polynome caractéristique de A est
Xa=X?—2X? - X +2=(X-1)(X+1)(X -2).

Il y a donc 3 valeurs propres distinctes, o(A) = {1, —1,2}, en particulier A est diagona-
lisable et comme dans ’exercice précédent, on pose

=7 +7 (=1)F+73- 2"
Pour déterminer les v;, on utilise les conditions initiales : xg =0, x1 =2 et 5 =6 :
ro=m+rrtr =0

1= —"72+27n =2
Ta=mn+r+dr =6

On résout ce systéme (par exemple, on retire la premiere ligne a la derniére, puis on
ajoute la premiere a la deuxiéme), on trouve :

M= -2, Y2 =0, V3 = 2.
Et donc finalement :
T =+ (1) 4 - 28 =28 2,
Par exemple x5 = 26 — 2 = 62 et 219 = 2046.

Exercice 5. 1. La matrice des cofacteurs d’une matrice carrée A € M, (K) est la
matrice Cof(A) = (¢;;) € M, (K), ou ¢;; est le cofacteur d’indices (i,7) de A,
c’est-a-dire le déterminant de la sous-matrice A(i | j) obtenue en supprimant la
i€ ligne et la j*™¢ colonne de A, multiplié par (—1)™7 :

cij = (=1)""7 det(A(i | 5))
La formule de Laplace nous dit que
A-Cof(A)" = Cof(A)T - A = det(A)],,

1
. . . —1 _ T
en particulier si det(A) # 0, alors A~ = dot(A) A)Cof (A)".
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i _3 1 0 0
Cof(X) = Cof(Y)=—-a 1 0
a* —a 1

3. Pour illustrer la formule, commencons par un exemple numérique. Considérons la

matrice

1 3 0
A= 2 -1 2 1,

5 4 2

alors
1 3 0

det(A+tEy3) =det | 2 —1 (2+1¢t) | =8+ 11¢,

5 4 2

En calculant ce déterminant par développement selon la 3¢ colonne, on « voit »
que le coefficient de t doit étre le cofacteur cy3. On a en effet

1 30 1 3
det | 2 =1 2 | =8 et cy3=(—1)*"det (5 4>=11.
5 4 2

Pour le cas général, on calcule le déterminant de (A +tE;;) en développant par
rapport a la

‘eme

™€ colonne :
det(A+tE;;) = (=1)"ay; det(A(1]5)) + - - + (=1)" (ay; + t) det(A(i]5))
+ o+ (=1)"Ha,; det(A(n]5))

= (=1 Yay; det(A(k]j)) + t.(—1)" det(A(i]))

= det(A) +t- Cij

4. Un élément X € M, (R) peut étre vu comme un élément X = (z;;) € R™*" dont les
coordonnées sont doublement indicées. La matrice E;; € R™ " est alors 1'élément
dont toutes les coordonnées sont nulles sauf la coordonnée d’indice (4, j), qui vaut
1. La fonction det : R™*™ — R est clairement différentiable (c’est un polynéme de
n? variables).

En appliquant le résultat du point (c) et la définition de la notion de dérivées
partielles on obtient

det det(X +tE;;) — det(X det(X te;;) — det(X
Odet ) _ 1 detX - HEy) —det(X) _ | (det(X) + ) — det ()
axij t—0 t t—0 t
:lthij = Cij,
t—0 ¢

ot I'on a noté ¢;; le cofacteur de X en position (i, j).

6
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5. Voici un code en Python dont 'input est une matrice A donnée comme une liste
de n listes, contenant chacune n éléments. Le premier code calcule un détermi-
nant (récursivement, par développement selon la premieére colonne). Le second
code identifie la sous-matrice g(z | j) et le troisieme code produit la matrice des
cofacteurs.

def determinant(A):
n = len(A)
if n ==
return A[0] [0]
elif n ==
return A[O] [0J*A[1][1] - A[0][1]*A[1][0O]
else:
det = 0
for j in range(n):
sign = (-1)*xj
sub_det = determinant (submatrix(A, 0, j))
det += sign * A[0][j] * sub_det
return det

def submatrix(A, i, j):
return [row[:j] + row[j+1:] for row in (A[:i]+A[i+1:]1)]

def cofactors_matrix(A):
n = len(A)
C = [[0]*n for i in range(n)]
for i in range(n):
for j in range(n):
sign = (-1)*x(i+j)
M = submatrix(A, i, j)
cofactor = sign * determinant (M)
C[i] [j] = cofactor
return C

Exercice 6. 1. En effet, la derniere colonne de A — 21Ig est nulle, ce qui montre que
det(A—21g) = 0, et ainsi I'existence d’un vecteur propre. Par exemple, on voit facilement
que A - e5 = 2e5 ol {eq, e, €3,¢€4,€5} est la base canonique de R®. Donc A = 2 est une
valeur propre de cette matrice et e5 est un vecteur propre associé.
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2. Pour trouver la multiplicité géométrique de A = 2 on cherche le rang de la matrice

-2 -4 -3 9 0

1 2 -2 -6 0
B=2;—A=| 0 0 -4 4 0
3 6 2 5 0

0

0O 0 -1 -1

Une forme échelonnée de cette matrice est

1 2000
00100
0001O0
000O0O
000O0O

Donc le rang de (215 — A) est 3, la multiplicité géométrique cherchée est donc

multgeom,(A) = dim Ker(2/; — A) =5 —rang(2l; — A) =5 -3 = 2.

Exercice 7. On répete la preuve classique de la formule du binéme de Newton en re-
marquant que N7 = 0si j > m et (f) =0sij >k (car il y a zéro sous-ensemble & j
éléments dans un ensemble de k éléments si j > k).

Soulignons que 'argument ne marche pas si NQ # QN.

Exercice 8. On sait que la fonction fy(z) = e vérifie I'équation f; = Afy. Donc tout
A € R est valeur propre de D et la fonction f) est un vecteur propre associé a .

Si f est un autre vecteur propre de valeur propre A, on a
D(EeM)t)==xe M)+ e Mf(t) = —Ae M f(t)+ e M f(t) = 0.

Par conséquent, t — e ' f(t) est de dérivée identiquement nulle, ce qui montre par
connexité de R que c’est une fonction constante. Il existe donc ¢ € R tel que f(t) = cer?
pour tout ¢t € R.

Exercice 9. Soit ¢ une fonction propre de l'opérateur 7', alors il existe A € R tel que
Ty = Ap. On a donc

1
6596/ e *p(s)ds = Xp(x) pour tout x € R. (1)
0
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Cette identité implique que

1 1 1 A1 [
)\/ e “p(r)dr = / et (/ e_scp(s)ds) dx = / e *p(s)ds.
0 0 0 4 Jo

Par conséquent, si

on obtient I’équation

et — 1

A= :
1t A

Si A # 0, alors u # 0. En effet, la fonction propre ¢ n’étant pas identiquement nulle,
et la fonction exponentielle ne s’annulant jamais, l'identité (1) montre que p # 0. Par
conséquent, on obtient

et — 1

)\ =
4 Y

et I'espace propre associé a cette valeur propre est (en vertu de (1))
Vectg (x — ).

qui est un sous-espace vectoriel de dimension 1. La multiplicité géométrique associée a la

4
= 13.3995 - - - est donc égale a 1.

valeur propre

Si A = 0, alors I’espace propre associé est donné par

Ker(T) = ¢°(R) N {gp : /01 e Sp(s)ds = 0} :

Il est facile de voir que c’est un espace vectoriel de dimension infinie. Deux exemples
simples de familles de fonctions linéairement indépendantes dans le noyau de I'opérateur
T sont

{on(s) = e’sin(2kms) | k € N*} et {1%(3) =e’ (5 - %) | ke N}

La valeur propre A = 0 est donc de multiplicité géométrique infinie.

Remarque 2. La solution de I'année précédente consistait a dériver ’équation, mais on
voit que ce n’était nullement nécessaire. On peut néanmoins la répéter en remarquant
qu'un vecteur propre associé a une valeur propre non-nulle doit étre différentiable et
méme de classe €.



