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Exercice 1. On considère l’application θ de Kp × · · · ×Kp = (Kp)p dans K donnée par

θ(X1, · · · , Xp) = det
(
X1 · · · Xp C

0 B

)
Cette application est p-linéaire et alternée. Le théorème fondamental sur les déterminants
entraîne alors que θ est un multiple du déterminant p× p, i.e.

θ(X1, · · · , Xp) = γ · det(X1, · · · , Xp).

On trouve γ en évaluant les deux membres de l’expression précédente sur la base cano-
nique (e1, · · · , ep) de Kp,

θ(e1, · · · , ep) =
∣∣∣∣Ip C
0 B.

∣∣∣∣ .
On peut ensuite montrer par récurrence sur p et en développant le déterminant par
rapport à la première colonne que θ(e1, · · · , ep) = detB. On a alors

θ(X1, · · · , Xp) = detB · det(X1, · · · , Xp).

En considérant que X1, · · · , Xp sont les colonnes d’une matrice A, on obtient bien l’ex-
pression du déterminant par blocs voulue.

Pour le polynôme de caractéristique de M , on a donc

χM = det(M −X In) = det(A−X Ip) det(B −X Iq) = χA χB

avec n = p+ q, car
M −X In =

(
(A−X Ip) −C

0 (B −X Iq)

)
.

Exercice 2. (a) Rappelons que deux matrices A,B ∈ Mn(K) sont semblables s’il existe
P ∈ GL(n,K) telle que B = P−1AP . Lorsque c’est le cas, ces matrices ont le même
polynôme caractéristique car

χA = det (A−X In) = det
(
PBP−1 −X In

)
= det

(
P (B −X In)P−1)

= det (B −X In) = χB.

(b) La multiplicité géométrique d’une valeur propre λ est la dimension de l’espace
propre associé à cette valeur propre :

multgeomλ(A) = dim (Eλ(A)) où Eλ(A) = Ker (A− λIn)
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(c) Si λ ∈ K est une valeur propre de A associée au vecteur propre v ∈ Kn, on a
Av = λv. Comme B = P−1AP , on obtient

B(P−1v) = P−1AP (P−1v) = P−1A(PP−1)v = P−1(Av) = P−1(λv) = λP−1v.

Par conséquent, λ est également une valeur propre de B de vecteur propre P−1v. On en
déduit que la multiplicité géométrique de λ pour B est au moins égale à celle de λ pour
A, et les rôles de A et B étant symétriques, on obtient l’égalité.

Exercice 3. Le principe pour trouver le terme général est le suivant : pour n ∈ N on
forme le vecteur Xn =

(
xn

xn+1

)
. On a alors

Xn+1 = A ·Xn, avec A =
(

0 1
−4 5

)
On a donc :

X0 =
(
x0
x1

)
=

(
1
3

)
et Xn = AnX0.

Pour résoudre la récurrence, il faut donc en principe calculer les puissances de la matrice
A. On peut toutefois faire l’économie de ce calcul et utiliser le théorème vu au cours.
Voyons les deux méthodes.

Méthode 1. On a vu au cours le théorème suivant :

Théorème. Supposons que la matrice A associée à la récurrence linéaire

xk+m = a0xk + a1xk+1 + · · · + am−1xk+m−1,

est diagonalisable, alors le terme général de la suite {xk}k∈N s’écrit

xk = γ1λ
k
1 + · · · + γsλ

k
s .

où σ(A) = {λ1, . . . , λs}. On détermine les γi à partir des conditions initiales sur la suite.

Dans notre cas, A est une 2 × 2 matrice de polynôme caractéristique

χA = X2 − 5X + 4 = (X − 1)(X − 4).

Il y a donc 2 valeurs propres distinctes, le spectre de la matrice A est σ(A) = {1, 4}, en
particulier A est diagonalisable et on peut appliquer le théorème. On sait donc que

xk = γ1 + γ2 · 4k.
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Pour déterminer les γi, on utilise les conditions initiales : x0 = c0 = 1 et x1 = c1 = 3.
On a donc le système linéaire (les γi étant les inconnues) :{

γ1 + γ2 = 1
γ1 + 4γ2 = 3

En résolvant ce système trivial on trouve γ1 = 1
3 et γ2 = 4

3, et donc finalement :

xk = γ1 · 1k + γ2 · 4k = 1
3 + 2

3 · 4k.

Par exemple x5 = 1
3(1 + 2 · 45) = 2049/3 = 683.

Méthode 2. On diagonalise la matrice A. On sait déjà que ses valeurs propres sont
1 et 4. On cherche une base propre {U, V } :

AU = U, AV = 4V.

On trouve facilement les vecteurs propres U =
(

1
1

)
et V =

(
1
4

)
(ou des multiples non

nuls arbitraires de ces deux vecteurs) ; on a donc la diagonalisation :

A = PDP−1, avec D =
(

1 0
0 4

)
, P =

(
1 1
1 4

)
, P−1 = 1

3

(
4 −1

−1 1

)
.

donc

Ak = PDkP−1 = 1
3

(
1 1
1 4

)(
1 0
0 4k

)(
4 −1

−1 1

)
= 1

3

(
4 − 4k −1 + 4k

4 − 4k+1 −1 + 4k+1

)
.

On a donc

AkX0 = 1
3

(
4 − 4k −1 + 4k

4 − 4k+1 −1 + 4k+1

)(
1
3

)
= 1

3

(
1 + 2 · 4k

1 + 2 · 4k+1

)
.

On a donc x0 = 1
3(1 + 2 · 4k). C’est donc une méthode bien plus lourde et d’un intérêt

limité.

Remarque 1. Même si la matrice n’est pas diagonalisable, on peut tout de même utiliser
la méthode astucieuse. Si l’une des racines a une multiplicité positive, on considère au
lieu de termes de la forme λn des termes de la forme nkλn et on vérifie sans peine que cet
Ansatz fonctionne toujours. On peut même oublier la matrice A. Si on a une suite de la
forme

xn+2 = a xn+1 + b xn,
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on considère le polynôme X2 − aX − b. Si ses racines λ1, λ2 ∈ C sont distinctes, alors il
exist γ1, γ2 ∈ C tels que

xn = γ1 λ
n
1 + γ2 λ

n
2 .

Si λ1 = λ2, alors

xn = γ1λ
n
1 + γ2 nλ

n
1 .

On sait déjà que {λn
1 }n∈N est une solution de cette récurrence linéaire, donc il suffit de

montre que {xn = λn
2 }n∈N en est également une. En effet, on a

xn+2 = (n+ 2)λn+2
1 .

D’autre part, on a

a xn+1 + b xn = a(n+ 1)λn+1
1 + b n λn

1 .

Comme X2 − aX − b = (X − λ1)2, on obtient a = 2λ1 et b = −λ2
1. On a donc

a xn+1 + b xn = 2(n+ 1)λn+2
1 − nλn+2

1 = (n+ 2)λn+2
1 = xn+2.

On vérifie de même que ce principe fonctionne pour les récurrence d’ordre arbitraire. Avec
une récurrence de la forme

xn+3 = a xn+2 + b xn+1 + c xn,

on factorise P = X3 − aX2 − bX − c = (X − λ1)(X − λ2)(X − λ3). Si les racines sont
distinctes, une base de solutions est fournie par

{λn
1 , λ

n
2 , λ

n
3 } .

Si une racine est double (on peut supposer sans perte de généraliser que c’est λ1), alors
une base de solution est fournie par

{λn
1 , n λ

n
1 , λ

n
2 } .

Enfin, si λ1 est une racine triple, la base de solutions est donnée par{
λn

1 , n λ
n
1 , n

2λn
1
}

On laisse au lecteur le soin de vérifier ces assertions (qui se généralisent en tout degré).
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Exercice 4. Comme dans l’exercice précédent, pour n ∈ N on forme le vecteur Xn = xn

xn+1
xn+2

. Alors

Xn+1 = A ·Xn, avec A =

 0 1 0
0 0 1

−2 1 2


Le polynôme caractéristique de A est

χA = X3 − 2X2 −X + 2 = (X − 1)(X + 1)(X − 2).

Il y a donc 3 valeurs propres distinctes, σ(A) = {1,−1, 2}, en particulier A est diagona-
lisable et comme dans l’exercice précédent, on pose

xk = γ1 + γ2 · (−1)k + γ3 · 2k.

Pour déterminer les γi, on utilise les conditions initiales : x0 = 0, x1 = 2 et x2 = 6 :
x0 = γ1 + γ2 + γ2 = 0
x1 = γ1 − γ2 + 2γ2 = 2
x2 = γ1 + γ2 + 4γ2 = 6

On résout ce système (par exemple, on retire la première ligne à la dernière, puis on
ajoute la première à la deuxième), on trouve :

γ1 = −2, γ2 = 0, γ3 = 2.

Et donc finalement :

xk = γ1 + γ2 · (−1)k + γ3 · 2k = 2k+1 − 2.

Par exemple x5 = 26 − 2 = 62 et x10 = 2046.

Exercice 5. 1. La matrice des cofacteurs d’une matrice carrée A ∈ Mn(K) est la
matrice Cof(A) = (cij) ∈ Mn(K), où cij est le cofacteur d’indices (i, j) de A,
c’est-à-dire le déterminant de la sous-matrice A(i | j) obtenue en supprimant la
ième ligne et la jème colonne de A, multiplié par (−1)i+j :

cij = (−1)i+j det(A(i | j))

La formule de Laplace nous dit que

A · Cof(A)⊤ = Cof(A)⊤ · A = det(A)In,

en particulier si det(A) ̸= 0, alors A−1 = 1
det(A)Cof(A)⊤.
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2.

Cof(X) =
(

4 −3
−2 1

)
Cof(Y ) =

 1 0 0
−a 1 0
a2 −a 1


3. Pour illustrer la formule, commençons par un exemple numérique. Considérons la

matrice

A =

 1 3 0
2 −1 2
5 4 2

 ,

alors

det(A+ tE2,3) = det

 1 3 0
2 −1 (2 + t)
5 4 2

 = 8 + 11t,

En calculant ce déterminant par développement selon la 3eme colonne, on « voit »
que le coefficient de t doit être le cofacteur c23. On a en effet

det

 1 3 0
2 −1 2
5 4 2

 = 8 et c23 = (−1)2+3 det
(

1 3
5 4

)
= 11.

Pour le cas général, on calcule le déterminant de (A+ tEij) en développant par
rapport à la
jème colonne :

det(A+ t Ei,j) = (−1)1+ja1j det(A(1|j)) + · · · + (−1)i+j(aij + t) det(A(i|j))
+ · · · + (−1)n+janj det(A(n|j))

=
n∑

k=1

(−1)k+jakj det(A(k|j)) + t.(−1)i+j det(A(i|j))

= det(A) + t · cij

4. Un élément X ∈ Mn(R) peut être vu comme un élément X = (xij) ∈ Rn×n dont les
coordonnées sont doublement indicées. La matrice Eij ∈ Rn×n est alors l’élément
dont toutes les coordonnées sont nulles sauf la coordonnée d’indice (i, j), qui vaut
1. La fonction det : Rn×n → R est clairement différentiable (c’est un polynôme de
n2 variables).

En appliquant le résultat du point (c) et la définition de la notion de dérivées
partielles on obtient

∂ det
∂xij

(X) = lim
t→0

det(X + tEij) − det(X)
t

= lim
t→0

(det(X) + tcij) − det(X)
t

= lim
t→0

tcij

t
= cij,

où l’on a noté cij le cofacteur de X en position (i, j).
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5. Voici un code en Python dont l’input est une matrice A donnée comme une liste
de n listes, contenant chacune n éléments. Le premier code calcule un détermi-
nant (récursivement, par développement selon la première colonne). Le second
code identifie la sous-matrice Ã(i | j) et le troisième code produit la matrice des
cofacteurs.

def determinant(A):
n = len(A)
if n == 1:

return A[0][0]
elif n == 2:

return A[0][0]*A[1][1] - A[0][1]*A[1][0]
else:

det = 0
for j in range(n):

sign = (-1)**j
sub_det = determinant(submatrix(A, 0, j))
det += sign * A[0][j] * sub_det

return det

def submatrix(A, i, j):
return [row[:j] + row[j+1:] for row in (A[:i]+A[i+1:])]

def cofactors_matrix(A):
n = len(A)
C = [[0]*n for i in range(n)]
for i in range(n):

for j in range(n):
sign = (-1)**(i+j)
M = submatrix(A, i, j)
cofactor = sign * determinant(M)
C[i][j] = cofactor

return C

Exercice 6. 1. En effet, la dernière colonne de A − 2 I6 est nulle, ce qui montre que
det(A−2 I6) = 0, et ainsi l’existence d’un vecteur propre. Par exemple, on voit facilement
que A · e5 = 2e5 où {e1, e2, e3, e4, e5} est la base canonique de R5. Donc λ = 2 est une
valeur propre de cette matrice et e5 est un vecteur propre associé.
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2. Pour trouver la multiplicité géométrique de λ = 2 on cherche le rang de la matrice

B = 2I5 − A =


−2 −4 −3 9 0
1 2 −2 −6 0
0 0 −4 4 0

−3 −6 2 5 0
0 0 −1 −1 0

 .

Une forme échelonnée de cette matrice est
1 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0


Donc le rang de (2I5 − A) est 3, la multiplicité géométrique cherchée est donc

multgeom2(A) = dim Ker(2I5 − A) = 5 − rang(2I5 − A) = 5 − 3 = 2.

Exercice 7. On répète la preuve classique de la formule du binôme de Newton en re-
marquant que N j = 0 si j ≥ m et

(
k
j

)
= 0 si j > k (car il y a zéro sous-ensemble à j

éléments dans un ensemble de k éléments si j > k).
Soulignons que l’argument ne marche pas si NQ ̸= QN .

Exercice 8. On sait que la fonction fλ(x) = eλt vérifie l’équation f ′
λ = λfλ. Donc tout

λ ∈ R est valeur propre de D et la fonction fλ est un vecteur propre associé à λ.

Si f est un autre vecteur propre de valeur propre λ, on a

D(e−λ tf)(t) = −λ e−λ tf(t) + e−λ tf ′(t) = −λ e−λ tf(t) + λ e−λ tf(t) = 0.

Par conséquent, t 7→ e−λ tf(t) est de dérivée identiquement nulle, ce qui montre par
connexité de R que c’est une fonction constante. Il existe donc c ∈ R tel que f(t) = c eλ t

pour tout t ∈ R.

Exercice 9. Soit φ une fonction propre de l’opérateur T , alors il existe λ ∈ R tel que
Tφ = λφ. On a donc

e5x

∫ 1

0
e−sφ(s)ds = λφ(x) pour tout x ∈ R. (1)
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Cette identité implique que

λ

∫ 1

0
e−xφ(x)dx =

∫ 1

0
e4x

(∫ 1

0
e−sφ(s)ds

)
dx = e4 − 1

4

∫ 1

0
e−sφ(s)ds.

Par conséquent, si

µ = µ(φ) =
∫ 1

0
e−sφ(s)ds,

on obtient l’équation

λµ = e4 − 1
4 µ.

Si λ ̸= 0, alors µ ̸= 0. En effet, la fonction propre φ n’étant pas identiquement nulle,
et la fonction exponentielle ne s’annulant jamais, l’identité (1) montre que µ ̸= 0. Par
conséquent, on obtient

λ = e4 − 1
4 ,

et l’espace propre associé à cette valeur propre est (en vertu de (1))

VectR(x 7→ e5x).

qui est un sous-espace vectoriel de dimension 1. La multiplicité géométrique associée à la
valeur propre e

4 − 1
4 = 13.3995 · · · est donc égale à 1.

Si λ = 0, alors l’espace propre associé est donné par

Ker(T ) = C 0(R) ∩
{
φ :

∫ 1

0
e−sφ(s)ds = 0

}
.

Il est facile de voir que c’est un espace vectoriel de dimension infinie. Deux exemples
simples de familles de fonctions linéairement indépendantes dans le noyau de l’opérateur
T sont

{
φk(s) = es sin(2kπs) | k ∈ N∗} et

{
ψk(s) = es

(
s− 1

2

)2k+1

| k ∈ N

}
La valeur propre λ = 0 est donc de multiplicité géométrique infinie.

Remarque 2. La solution de l’année précédente consistait à dériver l’équation, mais on
voit que ce n’était nullement nécessaire. On peut néanmoins la répéter en remarquant
qu’un vecteur propre associé à une valeur propre non-nulle doit être différentiable et
même de classe C ∞.
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